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SUMMARY

The assumptions of the Prandtl-Busemann small-disturbance method,

together with the requirements of continuity and irrotationality, lead

to a recursive system of first-order partiasl-differential equations. The
first three sets of equations of this lterative procedure are rewritten
in complex-~vector form and readily integrated for their particular inte~
grels. The results of the general analysis are then epplied to the case
of subsonic flow past a parabolic cylinder. This calculation shows that
the curtailed small-disturbance solution, without the restraining influence
of a control parameter, is unsuitable for the description of subsonic flow
past the parabolic cylinder. When, however, the small-disturbance solu-~
tion 1s developed in powers of the undisturbed stream Mach number M, as

a control parameter and compared with the solution obtained by means of
the Janzen-Rayleigh or Mma-expa.nsion method, the two results are identical.

This agreement shows that the Prandtl-Busemann and Janzen-Rayleigh devel-
opments are but two different arrangements of the actual solution. Finally,
the small-disturbance solution for the parabolic cylinder 1s examined from
the point of view of thin-airfoil theory. The series development of the
fluid speed at the surface in powers of the ratio of the radius of curvature
at the vertex and the abscissa measured from the vertex agrees with the
results of second-order thin-asirfoil theory. Ailso, a th.ird-order thin-
alrfoil approximation is proposed.

INTRODUCTION

I'he problem of the integration of the equations of compressible flow
past a prescribed solid boundary has been treated most often by two approxi-
mation methods. The first one, initliated by Janzen and Rayleigh, proceeds
from the incompressible complex potential and develops the compressibility
effects in a series of powers of the undisturbed stream Mach number. It
is restricted to the subsonic range because the differential equations of
the process are always of the elliptic type. This method, moreover, is
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suited particulasrly for thick bodies and, hence, for relatively small
critical stream Mach numbers. The second one, the Prandtl-Busemann small-
disturbance method, proceeds from the undisturbed stream and determines
the disturbance effects by an expension in series according to a geometric
parameter characteristic of the body shape. This method is most suitable
for slender bodies fox which the eritical stream Mach numbers are close

to unity. Very little is known about the limit of convergence of the
power series employed in these two methods. In a recent paper, however,
on high subsonic flow past a sinusoidal wall, a plausible argument was
presented vwhich indicated that the limit of convergence is coincident with
the attainment of local sonic wvelocity (ref. 1).

The present paper contains a brief account of Imail's elegant version
of the Prandtl-Busemsnn small-disturbance method (ref. 2). The original
Prandtl-Busemann method is based on the following assumption: If e is
a perameter that characterizes the departure of the profile shape from a
straight-line segment (for exesmple, thickness, camber, or angle of attack)
at zero incidence, the velocity potentilsal ¢ end the stream function
can be represented by series in powers of €, the coefficients of which
are functions of the flow-plane coordinates x and y. Thus, in non-
dimensional form:

§=-x+efy+efo+eIPs+ ...
(1)

V=g e+ P St ..

where the undisturbed stream is directed from right to left. On the basis
of this assumption, there follows from the general second-order nonlineaxr
compressible-flow equation for ¢ or V¥, by means of a comparison of coef-
Picients, a recursive system of second-order differential equations for

the coefficients of the individual powers of €. The first one is a Laplace
type of equation and the ones that follow are of the Poisson type, the
right-hand sides of which are composed of previously determined functions.

Imai's version of the Prandtl-Busemann method proceeds from the set
of first~order differential equations for ¢ and V¥ +that results from
the requirements of continuity and irrotetionality. Thus,

~

u=¢x=P_;°"Fy
? (2)
P
'V'=¢ =-._w.vx
y p J
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Then, by means of equations (1) and the following expression for Bp_’

L 1_-—-7-1M°°2(q2-1) 7 (3)

a comparison of the various powers of e yilelds a recursive system of
first-order equations for ¢l, V5 ¢2, VYoj5 ¢5, 11:3; « « o similar to

equations (2). - These pairs of equations can be expressed in complex-
vector form and readily integrated for their particular integrals. The
symbols used in the preceding equations are defined as follows:

X,y rectangular Cartesian coordinates in flow plane

¢ velocity potential

¥ stream funetion

u,v velocity components in direction of x- and y-axes, respectlively
o] density of fluld

Peo density of fluid in undisturbed stream

.q_ Tluid speed

Moo Mach number of undisturbed flow

V4 ratio of specific heats at constant pressure and volume

The quantities =x, Yy, ¢, ¥, u, v, and q are all nondimensional and the
subscripts denote differentiation with respect to the designated varisble.

Whereas in the Janzen-Rayleigh method the expansion of the complex
potential in powers of M2 is alweys possible, in the Prandtl-Busemann
method the expansion of ¥ (or @) in the form of equations (1) cannot
be guasranteed a priorli. Indeed, experience has shown that only in cases
vwhere the prescribed profile has no stagnation points so that the assump-
tions of the smell-disturbance method are adhered to strietly can the
expansions for ¢ and V, as indicated in equations (1), be valid (refs. 3
and 4). Most profiles of aeronautical interest, however, have rounded
leading edges and therefore possess stagnation polnts, in the neighborhood
of which the assumption of small deviation from undisturbed flow is clearly
violated. In such cases, sooner or later, terms of the form eBlog €
must appear (ref. 5). The procedure then is as follows: The velocity
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potential and stream functions are still assumed in the form of equa-
tions (1), but with the parameter € now considered: as a dummy symbol
vhich serves only to regulate the course of the iteration process. When
the stream function only is considered, the spproximation func-

tions \yn(n 2 2) are assumed to satisfy the boundary condition that they

vanish on the contour, are reguler in the region of flow outside the bound-
ary, and their derivatives vanish to a sufficient degree at infinity. The
first pair of terms in the expansion usually represents the Prandtl-Glavert
linearized approximstion. It is further assumed that, except for a small
region in the neighborhood of stegnation points, the function vV, and its

derivatives are small compared with V¥, and its derivatives for all m <n.

The question vhether this assumption is satisfied can be answered only after
the +V, have been calculated.

As borne out affirmatively in the only two cases thus far calculated,
nemely, the elliptic cylinder and the circular-arc profile (refs. 5 and 6),
it seems reasonable to conjecture that, if it were possible tg calculate VYpn
to any order and if each term were developed in powers of Mx~, the formal
arrangement in series of these powers would yield precisely the Janzen-
Rayleigh solution for the same profile. The example chosen to illustrate
the general analysis of the present paper and to verify the preceding
conjecture is the flow at zero incidence past a parabolic cylinder. This
profile is especlally ameneble to treatment by means of both the small-
disturbance method and the Janzen-Rayleigh method. Moreover, because the
parebolic cylinder represents a megnified picture of a stagnation region,
it is particularly well sulted for a critical examination of the utility
of the small-disturbance method for the calculation of the flow in the
neighborhood of stagnation points. It does not follow, even though the
preceding conjecture 1s verified, that the smell-disturbance method provides
a sultable approximation in the neighborhood of a stagnation point.

ANALYSIS

The development of the nondimensional f£luid speed gq 1s obtained
with the aid of equations (1) and (2). Thus,

Q@ - 1= ~2ef,, + e2(¢lx2 + ¢1y2 - a¢ax> +

2€3(¢k¢ax + Gy oy - ¢3x) .. (%)
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The corresponding development for Po 35 obtained by means of equa-
p

tions (3) and (4); that is,

p

Po _ 3 - ema?¢1x + % €2M,2 E% + 7Mh?9¢1x2 + ¢1y? - 2¢2%] +
M2\ P 1oy + Fryfoy - ox + & Mol (FruBsy” + Hraay) -

%-7M&2<%'+ §Zﬁ§;3=mgéj¢1%§] e (5)

A comparison of coefficients of individual powers of € in equations (2)
leads to the following sets of recursion formulss for the first three

steps:

1
52¢1x = ‘Vly
> (6)

¢1y = '\le

J N
Box = Yoy - 2 M7 Ea + (7 + 1)Mw2]¢3x2 + fry? + 2Py

> (7)
¢2y = Yo, + Mooz¢lx‘yh
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-

o = ¥y - M2 Eb‘%‘ * brghay - 3 2ty - i) -

1.2 2y -1 2 3 1( 2 2
E‘Mm (1+—-5—Moo)¢1x '§1+7M°°)¢lx‘yly"

L 912y + Foyny + ¢]x¢2y] g r (8)
By = ~¥zy + M‘EEJ.::“'& - %(l ¥ 7M°°2)¢1x2"’m

1, 2 '

> Gy ¥ix + ¢2x\l!lx:|

By the introduction of the complex notation

x+iBy=z
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and. with the aid of the symbolic relations

_a_=_§_+_a_
ox Jz O%
_a_= iB_a—_._a_
oy oz 0z

equations (6), (7), and (8) become, respectively,

W = O (9)

wzf_-:_lmwz (a-l)w 2, oow. W._ + oW

4 1z 1z 1z 1z (20)

Vg = i—Mmz 2w1z(w2z + ﬁaz) - 20'(wlz + ﬁlE)(waz + Wz + Wy, F ﬁa'z')"'
i‘E - p2(4a - ﬂwlz(wlza - 712-2) + % ﬁa(wlz - 17._) +

5 L —
l:%+ % g2 - 3-(J. + 52)0 +3 Bacgl (wlz + wl'i)3 (11)

2
7+ 1Y% yote that the right-hend

52
sides of equations (10) and (11) are composed of, respectively, double
and triple products of previously determined perturbation quantities.
Equations (9), (10), and (11) are first-order complex-vector equations
with W, as dependent vaerisble and z and z as independent variables.

They can be integrated in a straightforward manner. Thus, equation (9)

where B2=1—M002 eand o= 1+
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means that w; is a function of z only. Then, the general integral of
equation (10) is the following expression:

Wy == % 42| (o - 1)'z‘wlz2 + 20W;w,, + ofﬁlzzd% + F(z) (12)

vhere F(z) is an arbitrary function of z to be d.etermined by the
boundary conditions.

From equation (12), the general integral of equation (11) is as
follows:

3

2 —
w. = M2 lea(a - 1)22211:LZ W + %‘-Moaad(o' - l)zwl'z +

5= 2 -
- )b b e
(s - o5+ #2) - 1o, + 3o - 2)[20(5 + 62) -
5+ 3]s + 36 - Do + ) - 2] o
1 o‘(.a - e[ (i0,2), + meugms? | + 2 (B,

2W1le'ﬁ'l§ + leEa> - %Mwa[(d - l)E‘leFZ +

a<'ﬁ1Fz + wlzf>+ qf Wi5Fy di] + G(z) (13)
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vhere G(z) is an arbitrary function of z to be determined by the
boundary conditions.

It is noteworthy to remark thet in the original version of the small-
disturbance method the differertial equations 'corresponding to equa-
tions (9), (10), and (11) are of the second-order Laplace and Poisson
types. Therefore, the arbitrary functions added to the particular
integrals can be functions of either z or % only. Past experience,
however, has shown that certain terms in the third approximation give
rise to singularities in the region of flow (ref. 6). These spurious
singularities must be compensated for by the addition of suiteble func-
tions of 2z and of Z in compliance with the boundary conditions at the
surface and at Infinity. In the present version of),the small-disturbance
method, the arbitrary functions added to the particular integrels can
only be functions of z. Therefore, because both functions of z and
functions of Z are necessary for the removal of external singularities
in the presence of a solid boundary, the complicatien of apparent singuler-
ities in the external region cannot occur in the present circumstances.
As a f£inal remark, note that the form of the partlcular integrals obtained

for subsonic flow remains the same for supersonic flow with 32 = M¢.2 -1
7 - 1M .

and o=1 - M 52

SUBSONIC FLOW PAST A PARABOLIC CYLINDER

Before proceeding to the calculation of the subsonic flow, the
incompressible flow past a parsbolic cylinder will be derived. Thus,
consider the transformation

vhere z=x4+ 1y and { = £ + 1in. Then the'real and imaginary parts
give

(1k)

ed
]
N

"

=
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and hence, by the elimination of the veriable 1,
x -2 =-22 (15)
g2

Thus, the curves for ¢ constent are parsbolas whose foci are at the
origin (fig. 1(a)). In order to obtain the flow past a parsbolic
cylinder ¢ = §g, with undisturbed velocity from right to left, it is

observed thet the nondimensional stream function is given by

¥ = -2(k - &o)n

The complex potential w= ¢ + iy is then given by

w=-(t2 - 2¢0L)

and the complex velocity by

EE=u-:i.v=-l+-§9-
dz
Thus,
N
EqE
u=_-l+ °
2 + o2
> (16)
Eon
V== c—ae
£2 4+ 02
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Now, from equations (1),

52_x+\/x2+y2
2

2_--x+\/x2+y2

= =
2

The polar equation of the parabola is

Hence, from the second of equations (17), on the parabola £ = Eq,

Therefore,

2¢ 2
r=-———————
1+ cos ®

X =1 cos O

y=rsin o

0
T]=:I:§°ta.n-2-

from equations (16),

u= --as:!.n2 8
2

v = :l:lsine
2

- —p T e A T & emmp—— —————— ——— T ¢ e

(17)
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or

q= u2+v2=sin

Figure 2 shows the velocity and pressure-coefficient distributions

along the upper surface of the parabolic cylinder. Note the monotonic
character of q and that the undisturbed stream speed is reached at
X=y= - (8 =gx). This behavior mekes the parabolic cylinder a partic-
ularly good shape for the examination of the Prandil-Busemenn small-
disturbance method in the neighborhood of a stagnation point.

Conslder now the subsonic case; let

2
x + iy = Ba(g + % n) (18)
or
)
2
x = p2[e2 - 115
B
e (19)
Y = 28
J

Elimination of 7n° from these equations ylelds

2
x - p%2 =—1—2 (20)
he
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Thus, the curves for £ constant are parabolas with foci at x = - 252,

y = 0 with the focal distance §2 independent of the stream Mach num-
ber Mo (fig. 1(b)). Note, further, that equation (20) results from
equation (18) with the coefficient of in completely arbitrary. The

choice of %— wes made in order that 17 be identicael with the 17 of the
incompressible case at the surface. Thus, from equations (19),

]
§2=x+\/x2+B2'y2

2p2

3 @)

2_-x+\/x2+[32y2

2 J

§o (fig. 1(b)):'

Also, on the parabola ¢§

X = 2502+rcos e

and,
y=1rs8in 6
where
2
2
r=_—£o——-
1l + cos ©

Introducing these expressions into the second of equations (21) yields

)
n=2=+§, tan =
° 2

as in the incompressible case.

- m e e —r s - ——— o —— v se— et = = o T — o ————————— = = ==
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Now, the first approximation wy = @ + %'. ¥, 1is a function

of z = x + iBy and therefore of { = ¢ + % 1 only. Comparison with

the incompressible case shows immedistely that

W1=¢1+%*1=2§o§
i

v=-2(¢ - Eo)n (22a)

which satisfies the boundary condition that ¥ =0 for § = g, and that

at infinity the dis‘turbance velocities vanish for points not near the
parabola. The expression for the velocity potential becomes

¢ = -2 (§2 - 2—22-) + 280t (22p)

Now, let the positive sense of describing the parabolic boundary be
counterclockwise with the positive normal direction inward. Then, if ds
and dn represent elements of arc and inward normal, respectively, the
expressions for the normal velocity in terms of the stream function and
the velocity potential are as follows (fig. 1(b)):

v
q_n=-.p;.;___n___ (238-)

)
2\/502 + 72

qn=

,(}2 + 12)g, - wleog, | (23)

1
2(52§02 + ,,2)\ /goz + 72
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Clearly, from equations (22a) and (23a), the normal velocity venishes
along the boundary & = &, whereas (qﬂ)g-g # 0 from equations (22b)
— 20

and (23b). Thus, in general, the boundary conditions cannot be satis-
fied simultaneously for both ¢ and VY. In the present version of the
small-disturbance method, the function ¢ does not represent the velocity
potential of the flow but is utilized only for purposes of notation and
ease of calculation of the stream funetion V.

Now, with w = 26,0 and z = p°t?, equation (12) yields

-2 -
1, o MP 4 £ . T
w2"‘"1";§° B—a-(o‘—l)'g—é""uﬂz'l‘ao'logg +F|:Z(§)]

The arbitrary function F 1s determined from the boundary condition
that VYp = O on the parabola { = -{ + 2¢t,. Thus,

-2 .
IR V2 PO S .t
21y, = ,+§o 62 (o - 1) §2 22 +’-l-o‘§ E +

20’(log§-log§> +F-F

where the right-hand side of this equation is a pure imaginsry. Also,

=2

I.P. §—2-= -I.P. E—
i EZ

g2
I.P. £= ~I.P. -t:
t 4

I.P. log £ = -I.P. log {

InP-f: -I-P-F -
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Hence, on the boundary,

2 2 _
I.P.F=2 §°2 Mo_ 1.p. (o - 1)(g - 2to) - 4o ¢ -2 - 20 log ¢
L B2 < ¢

The expression on the right-hand side involves the varisble { only and
is regular throughout the field of flow; therefore,

2 2 -
F=%§°2Mw (U_l)ﬁﬁ:_?g_.&_-uui_cﬁe-aalog;

32 ;2
and.
2 2 _ (¢ - 2 T -2 -
w=l§2I.f‘L(0'-l)g (¢ 2§°)+lw§+; E’°+2orlos§§
2 (o] 2 2 ;
B S
Thus,
b, 2 o+ 1 B2e(E + &)
Yp = I.P.pwy = M"Eo"(E - Eo)n -5 3t 2(c - 1) 5
BTE” + 1 (ﬁ2§2 + 1]2)

(24)

This expression for Vo satisfies the boundary condition that it vanishes
at the surface of the parabolic cylinder & = §, and along the x-axis
(y = ® = 0) outside the boundary. In addition, it vanishes at infinity.

The expression for the third approximation \y3 is obtained from

equation (13). In the following, there are listed some of the individual
terms of_ equation (13) and the corresponding terms of the arbitrary func-
tion G[z(f)] chosen in such a way that it is regular everywhere in the

field of flow and that ¥3 vanishes along the parabola £ = §o and
along the x-axis y = 1 = 0:
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L
72W1 ;2] 55 =-§JE. _C—i to> (¢ - 2¢,)

26t ¢ 2% 5

- 3_E2 83 (4 -2)3

Wy
gt T3 gt ¢3
S~ oo 2801 2o 1 t
W L/; =dz = log ¢t - log
1zJ "1z gt & 34 £ - 2¢, 284
G 2. %2 T 2657 ¢ - 2t
171z Bll- ¢2 B)-L ¢2
T, D = ﬁi go5 (¢ - 26.)°
12 gho¢3 gt ¢3
w_3—=_2§°33 _2§°3_1_
3 %35 3 3
2 280° ¢ 2”7 (6 - 285)
vy (wlz )z =- = -
Bt ¢ p* ¢t
= Eg2 ¢ Eo0 b - 2k,
Zwlzwl-z- = — [Pl . AL * }
Eﬁf'ge g 2
V—T %I _ 2§03 Ea 2§o3 (g - 250)2
1 Mgz =~ Tz
2 gt gt ¢3
3 3

gt € gt ¢

W g 2&03 ; - 2§o
1%z~ = = -
S 2 gt g2

>

17

(25)
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Thus,
1, 382 2 2 (¢ - 2t )
G—=-)I§o -—TI.-%MQ(O‘—J_) —= 20 .lezo'(lpo'.._]_)_
8 ¢° 5

2
£ - ea(3 + 2) - (5 4 3323} (_c_-_;,_w_ -
¢

(20 - 1)[0(3 + ;32) - 2]-—-—2.5_ log 2§ + {- %Mfc@a - 1) +
= [o] o]

2(a - 1) [o(3 + p2) - 1]} f - 2%, 2{1&%2 -
§2

188 - 285)3
-31-(0 - l)[cr(B + p2) - 1]}% - MoPo(o - -—PT"—-)

2 2
§°3 t‘f (o - 1) [L(c ~ 1)§02 (_g_;_52§~°)_+ 2(a + 1)¢, -(-;—-%L)— +

4 g

Coj -

2 —_—
. (_;__%QO_)_J ) 20’!;-(0’ - l)§°2 < ;,4-250 + 2(o + 1)t g ;52§o

£ -2 £ -2t 1
g ca o]'l‘d’[-(d'—l)'——gé—o'l‘ll‘ﬂ-g-'i'

. .
2q 1 log—g— -l-acrl-'L(o‘-l)gi-+(c.1r+1)§-"=’-+E
§‘2§o 2§o 3 §3 §2 g
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This expression for G 1is regular throughout the field of flow, since

the apparent pole at { = 2o 1s canceled by the zero of log _§_ there.

£o
Then the expression for Wz is given by

2, o B (g - )t 2B+ (¢ -28)
w5=%§°3;%—<%%(0-1)2 5 o . o(s - )N, -—;‘*_L+

2+ (8 - 2,)°
LPo(o - nEEEE ol 4 SLa - 1)ze(3 + §?) - (5 + 362)] -
3 30 6

=2
Al st = (£ - 260)” (¢ - 2t0) + U(o - 1)[0(5 + p2) - :IE'—g “fo,
¢3 ¢2

-2
1 2P -0t -28) [ oy .70 _x2.2 &
5 9(30 - 1M = 2 5{(tr 1) |o(3 + %) E, saau.}g_g_-:-

L0g b o1 AR50 ket
(20 - 1) d(3+ﬂ2)-§](zloszgz ;-2g°1°52g°)>+8§° oh (o 1)|}(a 1)!;5 +

2
2(c + 1)§—°-+i Ea - (¢ - 2;0)2 + 2o|(c - 1)§L+ 2(c + 1)-§—°-+
g g3 th t3

—_ 2 2 —
gl g(g = 250) - ; (g - 2§°) - Lg (; - 250) - ; -
-;—251[; + (L - 2502' - UEU - 1) ;222 ;E

2 L 20 R P L 21 1) e (L, 21 1,2
?1082§o+§-2§01082§t] a’[i(a Do (?+;3)+(” )§°(F+;2)+a(;+S)J}




20 NACA TN 3318
and

ﬁj - -;& Eoshbh(d‘ - 1)2 éig.;g—o):)g[psgu(EE + 5;052 - agoag - m§°5) -
+ 7

Pou2e2 (3 + 2502 - 20ecRt - 20803) + 21567 + 21t0k® - 10ke% - 247) -

(¢ - Eon 2
o M to(o - 1)—=—s0 _ [p"§32§2-3§;—8§o)-
(5t + zo)] + §o”Mu 00 (22 + ) ( o

’ (& - &)
262128 (142 + Bob - o7 ) + MP(6E + Eo)] + B M —E;")B{o%a -

(5252 + ,12
%(c -1) Er(? +p2) -(5+ Baa'il} Eaga(; + 38g) - (3t + Eo)"lz] -

b0 Mata(a + 1)-15—'—5")1—(59252 - ) - 2 5mB0 - 1) {[c(ll +562) - B -

(822 + 2
) - 2 4 42
2 (¢ -~ Eo)n 2 2 _ 2) 4+ 2 t-% l;]_ogﬁag -
” ‘°} o EE N e A A
82(e2 - 2t1) + 2 ten-1 L (26)
Bto BE

This expression for 1y3 setisfies the boundary condition that it vanishes

at the surface of the parsbolic cylinder ¢ = Eo and along the x-axis

(y = 1 = 0) outside the boundary. The complete expression for the stream
function v, inclusive of the third approximation, is then given by the
sum of equations (22a), (24), and (26).

For the purpose of comparison with the Janzen-Rayleigh solution (to
be derived in the following section), the expression for the fluid speed
at the boundary will now be obtained in the form of a power-series devel-

opment in M2 . Symbolically,
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and.

9 _ 1 k-3 +p2 2 0
% 2(p%2 + g ) 3¢ 3

Also, in terms of the relevant quantities,

2 Mog@
Poa %n_ Moo= 1 -
m=1-s Wy [z(m + ¥yP) - ¥oy + Vaxkex +

Viytey - "’33] +

Then, if only the terms that involve the Mach mmber up to Ms> are
retained,

£2 + n2

+ M2 Eon log

= -2k - Eo)N + M E2(E - Eo)
£2 + 12 ng 2
o]

b
) . A to” (& - o)
(§ + 7 2§o§) tan : (ga N 112) (§2 + 12 - he ok + ll-_E,oa)

and

Pos M2
TP
P £2 + 12

Now, along the surface of the cylinder & = gy, where most of the interest
centers,
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Hence, with
2
Po _ 4 _ 1 Mn2 £o
P 2 go2 + 'q2
and
2 2 2
1 +
(wg)g__g = -2 + %2 ° + Mo® Eon log ° i
2 2
§° + 1 J-l-§o
3
2 _ 2\, -1 £o
(§° - 71°)tan
) Eo (§°2 + Tl2)2
it follows that
1 2 5021] 2 §o3 §°2 + .n2
qQ= ——-9N21 - M, _2—"'—2-Moo —T—a—a'f,o'fllog hgz
2\ ’§°2+T|2 §° + 7 (§° +T|) o
(862 - B)ten 1 (27)

JANZEN-RAYI.EIGH METHOD FOR PARABOLIC CYLJINDER

The solution of the problem of subsonic flow past a paraebolic cylinder
by means of the Janzen-Reyleigh method follows along the same lines as that
by meens of the small-disturbance method. Thus,



NACA TN 3318 23

' ¢=¢O+Mm2¢l+-..
and L (28)
V= o+ MYy + . . .

J

where @, and vy, are, respectively, the incompressible velocity

potential and stream function. Again, from equation (3), expanding in
powers of M‘,g.2 yields .

Peo 2 2 2
?=1-;‘2-.Mw l-(¢°x +¢oy)+... (29)

Then, from equations (2) » & comparison of the various powers of M‘,‘,2
yields the followlng recursive system of first-order equations for
¢o: Vo3 ¢1: Y5 - - o2

7
Pox = Yoy
(30)
¢oy = -Yox
¢lx = Y1y - % \l’oy[l - (fox® + ¢oy2)_J
> (31)
¢1y = “Yix * ';‘ *ox[l - (fox” + ¢oy2€l
Now, let 7
x+ iy=2
x-1iy=13%
Fn + 14n = Wy

Gn - 1lp = Wy

B e e R - e N i
‘
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Equations (30) and (31) then become

Woz = O (32)

W w2 (33)

W
+ 0oz 0

(o}

Wiz

FIH
=

Equetion (32) means that Wy 1s a function of 2z only, and the general
integral of equation (33) is

v =t ¢ %wozfﬁo-z?dz + H(z) (34)

vhere H(z) is an arbitrary function to be determined according to the
boundary conditions.

For the parabolic cylinder,

z = {2 (¢ =& + in)

Wo = "(; - §o)2

From equation (34) then
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The arbitrary function H is determined from the boundary condition
that ¥, = O on the parabola §{ = -{ + 2¢,. Thus,

1

-2 2 -
211’1 = % go(f - .to) - % §02(l°g E - 108 g) + % §o<‘%‘ - %) - 502(E - g) +

-;-.5.05(llogf—%log c>+n-ﬁ
4

where the right-hand side of this equation is a pure imaginsry. Also,
I.P.2(¢) = -I.P.E({); hence, on the boundary,

_ lep_L1:270.. 6 1, (&-260)2
I.P.H= I.P. 5 Eol 5 o log 2. "k o T
- 3
§°2 g 2§o - l_. go 108 ;
; 2 ; - 2§o 2§°

The expression on the right-hand side involves the variable { only and is
regular throughout the field of flow; therefore,

Slepole2q, b 1, (L-26)2
H—2§o§ 250 log T lp§° Z
-2 3
goac ‘E'O__]: gO log .ta
; 2g"'2§o 2§O

C e em e e wmm e e e e ——— ——— R ————— ——— —_—
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and
=Ll (04D ~Le210g e slg b = (8- 2
1™ 5% 5 °0 > I 0o t
TR
pf+l-2 1,3 t 1 4
= £o” |5 log - log (35)
gO g 2 [s) ; 2§0 ;_‘250 2§° .
Then,
£2 + 12  Eo(E - Eo) (EoE + 12)
By = Eof - = &o° log - -
1 o 2 °° 1|_§°2 §2+712
24+ 192
%go(eﬁ - 2EE - na)los i gt 2n(§2+ 12 - 280t +
heo
_an] %
250 - 2 (36)
J ) (€2 + 12 - bege + bg,2)
and
- 2 4 o2
‘l"l =-§°(§ §°)21]+ §°T] log —__§ 21] - (§2+T|2-
£2 4+ o2 B
§o3(§-g°)

(37)

11
2§o§)t8-n g (g + 112) (g + 12 - hg g + hgoa)
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Usually, most of the interest lies in the velocity distribution on the
boundary. Thus, substitute E = £, into equation (36) and in the

-R.P.({ - £)2; then at the boundary

Ec + 1 he 2 gO

(o]

The velocity of the fluid is given by

1= : 2(¢n)§=§o
e 2+

02 £o2n

1
2 2
2 \,goa + 12 E, + 1

Eo” 2 4 92 -
M‘,,a___o._z_zgo“ 1og§°__l+ (502 - 'qa)ta.n 1

(50 + 1 hgoa

N

3
E’O

Py

This equation is in agreement with equation (27). Thus, the small-
disturbance solution when expanded in powers of M‘,‘,2 yields precisely

the Janzen-Rayleigh result. Now, at the upper surface, 1 = £, tan g;

therefore,

q=sin—-—M°°2 cosag 2sin-g-+cosgecose-

2 gin 6 log(a cos g)] | (38)
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Qg

- pw
o

o [

cosag- 1+%M‘,‘,2 1+381n22+sin9{e cos 6 -

2 sin 0 log (2 cos —g-)] (39)

Teble I lists values of q and Cp for My, = 0.5 over the upper sur-
face of the cylinder and figure 2 shows the corresponding graphs.

Since the completion of this paper the attention of the author has
been drawn to a recent calculastion by Imal of the Janzen-Rayleigh solution
for a parasbolas including terms in Mml" (ref. 7). An error in sign in
reference T has been corrected. (Note last term in equation (38)).

DISCUSSION OF ANALYSIS

The main concern of this paper has been the presentation of Imei's
elegant version of the small-disturbance method and its application to
the problem of two-dimensional compressible flow past a parsbolic cylinder.
The example of the parabolic cylinder was chosen for the dual purpose of
i1lJustrating the results of the general analysis and for comparison with

the My°-expsnsion or Janzen-Rayleigh method of solution.

One of the basic assumptions of the small-disturbance method is that,
except for a small region in the neighborhood of the nose, the deriva-
tives of +V;, must be less than those of 4, where m <n. A numerical

comparison &t the surface of the parabolic cylinder shows, however,

that * ¥3x > ¥py oOver a large portion of the surface. Presumsbly, \if it
were possible to calculate v, <to any order, the condition that Vnx < Ymx
for n>m would be satisfied from some definite value of m onward.
Although the solution as obtained in the present paper satisfies the
boundery conditions at the surface and et infinity for each step of the
lteration process, violation of the foregoing basic assumption renders
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the curtailed solutlon useless for the calculation of the velocity and
pressure distributions at the surface. Nevertheless, some interesting
results with regerd to thin-airfoll theory can be obteined from the

expressions for V¥, VYo, and ¥z obtained from equations (228), (24),

and (26). Thus, by following the ideas of Van Dyke (ref. 8), the velocity
at the surface of the parabolic cylinder is developed in a series of

o 2
powers of §g , the ratio of the radius of curveture at the vertex and

N
the abscissa measured from the vertex. For this purpose, consider the
following expression for the fluid speed a in terms of the deriva-
tives - :

= 2y - - 1 Ly 2,31
4 1+Ba<¢1y Yoy ¥y BV Yo Ny oy

1
i - 3) (e + Sgrey

VVoy T ’#1y1l'2y) +
8p

2
2

vhere only those terms have been retained which involve the ratio —EZ—
. |
inclusive of the second power. From equations (22a), (24), and (26),
the required expressions for the derivatives of 1[:1, Vo and 113 at

the surface of the parsbolic cylinder are as follows:
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-

} (41)
Y, = 2 M5 (<r+l)§5’f+2(cr-3)lélzE’—tﬁ
&y 2 12 nl*
v =m2§_gt 121 -582) - X35 - p2) + 21 - 36°) -
33.r P |3 6 6

-]-'Er(c-l)(7+32)+2]21032359-+ 1 gan~t 2
L n 3 Eq

2 29
BTI BT]

J
Substitution of these expressions into equation (40) then ylelds



NACA TN 3318 31

2 4
q=1-§2—2(1+0'¥-“—->+-§°—h 1+i(m2-1)[1+(c-1)1w¢2(1+132+ %2)]_'_

y 2
lM-L(o'+ 1)2 —-:'-'r'—“l';-[aoa(l- 582) + Lhop2 + 8 - 2732] +
b g2 3 g2
2
1M&|Zr(o-1)(7+32)+2]2logap§—°+—Ltan‘1—1— (42)
252 n B.g_". B.§£
M ]

The first two terms on the right-hand side of this equation agree with
the results of second-order thin-airfoil theory (ref. 8). The third
term presumsbly would be obtained from a third-order thin-airfoil theory.
Although this term has been written in a form to suggest that it is of

2\2
order (EE%_) » it is of interest to note that the expression
n
tan™t can be expanded as follows:
Eo £o
B — B —
n n
1 1 x 1f, £, \2 3
tan™t = -1+=[p22) - ... p=2z1
Eq Eo 3 3\ 1 1
B2 2 zp-=e
n 1 1

This expansion leads to a term of the order g; namely,

\I_Z—ﬂMma 2t 23/2
'—32—;-3— o(o - 1)(7 + B?) + 2:|< 11: ) (43).

S e - e A b s r————
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The third-order thin-airfoll result can then be written as follows:

2 2

or 2
q=l—% S0 [1+(c-1)M,,2]+
1

g 2 3/2
-%?mfﬁw-1x7+ﬁ)+% = (1)

8202

The smaell circles in figure 2 designate points calculated by means of
this equation with M, = 0.5. The first circle corresponds to 6 = 120°
2

2t
for which the parameter g equals % If the terms that involve
1
¢ 2 Z
0 are included, the megnitude of q becomes greater than unity
1

even for values of © corresponding to points relatively far from the
nose. For example, q = 1.0132' at the polnt corresponding to 0 = 120°.
These spurious values of g dindicate that the fourth approximation of
the small-disturbance method must contribute additional terms of the

e 2\2
order (2§°).
112

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 21, 195k.
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TABLE I

NACA TN 3318

VELOCITY AND PRESSURE-COEFFICIENT DISTRIBUTIONS

. Mm =0 Mw = 0.50
6, deg
q Cp q Cp

o} 0 1.0000 o} 1.0625
5 0436 .9981 .0403 | 1.0607
15 .1305 .983%0 .1207 1.0459
30 .2588 .933%0 2402 .9971
45 3827 .8536 3573 9185
60 5000 .T500 24705 84T
5 .6088 .6294 5781 6915
g0 .T0TL .5000 6782 .5565
105 .T934 3706 7687 L4284
120 .8660 2500 .8u72 .2866
135 .9239 465 9115 L1707
150 .9659 0670 .9596 .0795
165 991k .0170 .9896 .0207

180 1.0000 0 1.0000 (o]
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(a) Incompressible flow. (b) Compressible flow.

Figure 1.~ Parabollc cylinder in two types of flow.
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Flgure 2.- Veloclty and pressure-coefficlent distribution along upper
surface of perebolic cylinder.
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